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EXACT PERFORMANCE OF GENERAL SECOND-ORDER 

PROCESSORS FOR GAUSSIAN INPUTS 

INTRODUCTION 

The performance of weighted energy detectors and correlators for 

processing deterministic and/or random signals in the presence of 

nonstationary noise is a topic of frequent interest. Most often, a second- 

moment approach is adopted, whereby the means and variances of the decision 

variable under the various hypotheses are evaluated and employed in a central 

limit assumption to get approximate false alarm and/or detection probabilities, 

This approach is suspect for small false alarm probabilities or for cases 

where the decision variable is not the sum of a large number of independent 

random variables all of comparable variance. 

A recent technical report [1] has presented an accurate and efficient 

method for evaluating cumulative and exceedance distribution functions 

directly from characteristic functions. This approach is very fruitful for 

determining the performance of general time-varying second-order processors 

with nonstationary nonzero mean Gaussian inputs, since the characteristic 

function of the decision variable can be evaluated in closed form in these 

cases. 

We will consider three classes of processors and derive the 

characteristic functions for all three decision variables in closed form. The 

first two classes are special cases of the third, but are of interest in their 

own right, since they include and immediately reduce to many practical 

processors in current use. Also there is no need to solve for the eigenvalues 

and eigenvectors of a general symmetric matrix that is encountered in the 

third more-general class of processors. Rather, the characteristic functions 

are given directly in terms of specified processor weights and input 

statistics. 

There has been considerable effort on this problem in the past; for 

example, see [2,3] and the references listed therein. Most of the lengthy 

analytical derivations and results have been aimed at getting workable 

1 



TR 7035 

expressions for the probability density function and/or cumulative 

distribution function. Here, when we consider our three classes of 

processors, we encounter characteristic functions which are more general than 

that given in the recent paper for a filtered analog processor [3, eq. 5]; 

thus specialization of our results will yield those of [3] and the references 

listed therein. The technique employed here to proceed directly to the 

cumulative and exceedance distribution functions is a numerical one, as given 

in [1], and does not require any series expansions or analytical manipulations 

at all. The asymptotic behaviors of the cumulative and exceedance 

distribution functions on both tails are easily observed and will be found to 

corroborate the comment made in [3, p. 673] that these tails are generally 

exponential rather than Gaussian; however, there can be a considerable 

transition region. 

The programs listed in the appendices require the user merely to input 

his processor weights, signal constants, and noise statistical parameters in a 

series of data statements at the top of the program, and to select values for 

L, limit on integral of characteristic function, 

A, sampling increment on characteristic function, 

b, additive constant, to guarantee a positive random variable, and 

M|r, size of FFT and storage required. 

Selection of L and A is largely a matter of trial and error and is amply 

documented in the examples in [1]. 
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A PARTICULAR SECOND-ORDER PROCESSOR 

Before we embark on the analysis of the particular second-order processor 

of interest in this section, we solve the following simpler statistical 

problem. Let s and t be real jointly-Gaussian random variables with means 

nig, m^, standard deviations a^, a^, and correlation coefficient p; 

thus s and t are statistically dependent. Consider the random variable 

X = as^ + bt^ + cst + ds + et. (1) 

where weightings a, b, c, d, e are arbitrary real constants. The 

characteristic function of random variable x is defined by 

fJf)  = exp(ifx) = exp(if (as^ + bt^ + cst + ds + et)) = 

= i ( du dv exp(if(au + bv + cuv + du + ev)) p ,(u,v). (2) 

where the joint probability density function of s and t is 

P3^(U,V) = ^2. a^a^^^ 
V-1 

exp 

9 \ 7 
'u-m\        /v-mA     /u-m \ /v-m,\ 

m-7) 
Substitution of (3) in (2) and use of the double integral 

J 
(3) 

lldx dy exp[-ax - gy + 2Yxy + ux + vy] 

yle^ 
^exp 

2    2 
Ju  + av  + 2YUV 

4(a6-Y^) 

for  a^ > 0,   S^ > 0,   a^6^ > Y^  , (4) 

Integrals without limits are over (-<«,■»-««>) 
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(where sub r denotes the real part of complex constants a, s, y, u, v) 

yields, after an extensive amount of manipulations, the characteristic 

function of random variable x as the compact closed form expression 

f,(?) - (i - uDi -?s)""' «4'^"°! Z''_ 
fO; 

(5) 

The required real constants in (5) are given directly in terms of the 

processor weights and statistical parameters as 

2    2 

D^  =  {4ab - C^)(l - P^]alal       , 

2   2 
NQ = am^ + bm^ + cm^m^ + dm^ + em^  , 

■ + {2ae - cd)ag(m^CT^ - pm^a^) + 

+ (2bd - ce)a.(m a.   - pm.a ) - 

,1 ,2 2 , 1 2 2 ^ ,    , 

N2 = - (ae^ + bd^ - cde)(l-p^)a^a^ (6) 

For later reference, the mean and variance of x follow from (5), upon 

expansion of in f^(|) in a power series in T, as 

^o^Dp 

% = I °1 " 2NQD^ - D2 - 2N^ (7) 
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(When D^ = 0 in (6), it can be shown that D^ <  0; ^hus characteristic 

function (5) never possesses any singularities along the real f  axis.) 

Second-Order Processor 

Now let X be the sum of K independent terms of the form of (1) 

K 

\4" vl' \hh" ^k^k" ^k^k) 
k=l 

(8) 

where real constants a,^, b,^, c,^, d,^, e^ can depend arbitrarily on k, 

and where means m^,^, m^,^, standard deviations a^^,  a^^,  and corre- 

lation coefficients p,^ are unrestricted (except that a^^ >  0, a^^ >  0, 

l^kl -  ■'•)• ^"^^ P^""" °'*' i"3ndom variables S|^, tj^ is statistically 

independent of the pair s^, t^ for all k :^ n. Thus random variable x is 

composed of a sum of K groups of random variables, where each group is 

statistically independent of e\/ery  other group, but each group itself 

contains two statistically dependent random variables. 

This processor in (8) is the general form of interest in this section. 

It can be time-varying when the weights [a,^, b,^, c,^, d^, e^] vary 

with k, and nonstationary when the statistical parameters [m ,  m+i, 
*■ S K   cK 

The characteristic function of (8) follows from (5) as 

f (?) = "U j"! - iTD^(k) -^2Q^(^J| 
k=l J 

exp ^1 ^    %M  - iTN^(k) -f2N2(k) 
Tr ^    1 - i?D^(k) -f"D2(k) 

(9) 

* These means can be interpreted as the deterministic signal components of 

the channels s and t, if desired. 
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where the identification of D^(|<), etc., is obvious from (6). Only one 

(continuous) square root and one exponential per f value is required in (9), 

regardless of the number of terms added, K. The mean and variance of random 

variable x in (8) follows from (9) as 

\=1   [No(k)4D^(k)], 
k=l 

a^ = 2 i D2(k) + 2NQ(k) D^(k) - D2(k) - 2N^(k)j. (10) 

Any analytical attempt at determining the probability density function or 

cumulative distribution function corresponding to characteristic function (9) 

would be a formidable task indeed. However, it is a very  simple task via the 

method of [1] to get accurate numerical values for the cumulative and 

exceedance distribution functions. The program listing in appendix A 

accomplishes this task, based upon characteristic function (9) and the 

constants listed in (6). All the weights {a,^, b^, c,^, d,^, e|^3^ and 

statistical parameters [m^,^, m^,^, a^^,  G^^,  P|3*^are arbitrary. Observe 

that (9) is far more general than the characteristic function considered in 

[3, eq. 5], which itself required a very lengthy analytic treatment to get the 

probability density function and cumulative distribution function. In fact, 

there is little hope of getting any tractable analytic results for (9) when K 

is greater than 2. 

Special Case 1 

Suppose weightings a, b, c, d, e in (8) are independent of k and that 

statistics a^,  a^,  p are also independent of k. The decision variable x 

in (8) then simplifies to 

k=l 

as^ + bt^ + cs^t^ + ds^ + et^)  . (11) 
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Then D^ D2, ^2 are independent of k. If we define mean parameters 

K 

k=l 
02 -l\l^    \l - ^ \k ^k 

k=l k=l 

10 = 'S ^k ' ^01 = 5 "tk  ' 
k=l k=l 

(12) 

the characteristic function of x in (9) then takes the simpler form 

f,{J) = (l -  i?Di - ^^D^^ 
-K/2 

exp i| 
^0 - ^"^h - y\ 
1 _ i^D^ - fD^ 

(13) 

where Di and D2 are still given by (6), and 

N = aM  + bM  + rM  + rIM  + PM 
0    20  ° 02  '^"ll  °"l0  ^'^1 

i;=(4ab-c2)(|.2,^Q4.2^Q2-p.^a^M^^) . 

+ (2ae - cd)a^(a^MQ^ - PC^M^Q) + 

+ (2bd - ce)a^(0^M^Q - PO^MQ^) - 

- K ("2 ^ ^s "^ "2 e a^ + depa^a^)   , 

N2 = - K(ae2 + bd^ - cde)(l - Q^)alal (14) 

(The choice of K = 2 and N2 = 0 in (13) corresponds to the form given in 

[3, eq. 5].) Observe that the characteristic function in (13) (and therefore 

the performance) of the processor in (11) depends on the means |m J.  and 

[m^l^} only through the parameters \}^^^  defined in (12). The mean and variance 
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of random variable x in (11) follow from characteristic function (13) as 

\ = %^7^^' 

a^ = Y KD^ + 2NQD^ - KDg - 2NJ . (15) 

Special Case 2 

Let us also assume d = 0, e = 0 in (11) above; then the pertinent 

decision variable is given by 

X = 2. (^^k ^ "k *  "k^k^  • (1^) 

K 

1 
k=l 

D-]^ and D2 are still given by (6), and there follows from (14), 

N;= (4ab-c2)(^a2M2o-^a2Mo2-Pa^a,M^l)   , 

N2 = 0  . (17) 

The characteristic function of x is given by (13), with Np = 0. The mean 

and variance of x in (15) are given by (15). 

Fading for Special Case 2 

Let the mean parameters [M.^"^ in (12) be subject to slow fading; i.e., 

replace 

M20 by rM2o, M02 ^Y rl^^^,  ^u  by rM;^^ (18) 

where power scale factor r has probability density function 
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V      1 

P^(u) = p^ u   e    for u > 0, V > 0; 

~"  1  2  1 _/ / >  (n-1)!  _c     , 
r = 1, a^ = -, Xr(n) =  n-1   ^^"^ " -^ ^' 

V 

(19) 

This form of fading is encountered in diversity combination receivers; see, 

for example, [4, eq. 9 et seq,] and [5, eq. 24 et seq.]. Then (13), (17), and 

(18) yield the conditional characteristic function, for a specified r, as 

fx(?k) = (l-^TDi-fS) 
-K/2 

exp 
NQ - i5N^ 

ifr  ^ 
1 - i^D^ - pD 

(20) 

Weighting (20) according to the probability density function in (19), and 

performing the integral, there follows, for the characteristic function of the 

decision variable x in (16), the result 

f (?) = 
(L - i?D^ - ^^D^y 

K 
2 

^ - i^D;^ + NQ/V) -f{D^  + NJ/v^ 
:2i) 

(The limit of (21) as v-*+c»is again (13) with Np = 0, as in (17); this 

agrees with the fact that the corresponding limit of the probability density 

function in (19) is p^(u) = S(u-l).) The mean and variance of x in (16) 

follow from characteristic function (21) as 

\ = %^i  KD^ , 

\ =^ KD^ + 2NgD^ - KD^ - 2N| + NQ^/V (22) 

Observe that mean u^ is independent of v, the power law in fading (19). A 

program for the cumulative and exceedance distribution functions corresponding 

to characteristic function (21) is given in appendix B. 
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SPECIAL FORMS OF SECOND-ORDER PROCESSOR (8) 

Before embarking on the analysis of the other two classes of processors, 

we will explicitly detail some of the special forms that processor (8) reduces 

to, under particular selections of the weightings and statistical parameters. 

A rather broad collection of typical processors will be seen to be included. 

In the following, any unspecified weights [a^,  b^,  c^, d,^, e,^] are zero, 

and any unspecified statistical parameters that do not appear in the final 

characteristic function are irrelevant. 

I. Gaussian 

d, .1 

k=l 

fx(?) = exp 
k=l 

2 
sk 

k=l 

II. Chi-square of K Degrees of Freedom 

\ = 1'  ^k = 0,     a^k = 1 

X = 

k=l 

f,(?) = (l - i?2) 
-K/2 

10 



TR 7035 

III.    Non-Central  Chi-Square (Q|v, Distribution if K = 2M) 

-2 
k=l 

f,(?)  = (l - 1T2C0 
-K/2 

exp k=l    ^^ 

1   -   if2a^ 

IV. Weighted Energy Detector 

a,^ ^ 0,      d^ ^ 0 

K 

X = ^{a^s^ + d^s^) 

k=l 

k=l 

1 
2 

exp -^ Vsk " Vsk * 'Jl-'k-'sk 

V. Weighted Cross-Correlator 

c, *0 

x=2 ̂
k^k^k 

K 

kTi 

D^(k) = 2c^Pk'^sk'^tk' 

D2(k) = -c^d - .l)a^^o^l. 

11 
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Nglk) = V^k^k' 

\M =  -c^(2 m^^ „^^  + 2 '"t^sk - Pk'"sk'"tk<'sk''tk)' 

N2(k) = 0 

Characteristic function flf)  is given by (9). 

VI. Two-Channel Energy Detector 

a^ ^ 0,  b^ ^ 0 

K 

'=2  (\^k" Vk) 
k=l 

Di(k) = Zla^a^^ . b,a,2) , 

D2(k) = 4a,b,(l - p2)aj,^2 ^ 

No(k) = a^m^^ + b^m^2^ 

N^(k) = 4a^b^(| m^la^l  + i m^^a^^ - P^^k^k'^sk'^tk)' 

N2{k) =0. 

Characteristic function f^{J)  is given by (9). A simple application of this 

particular processor was encountered in [6, eqs. 25-26]. 

12 
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VII. Two-Channel Energy Detector and Cross-Correlator 

,    a^ ^ 0,  b|^ ^ 0,  c,^ ^ 0 

K 

D^(k) = 2(a^aJ + h^a^l  + C^P^a^^a^^)  , 

D2(k)={4a,b, -c2)(l-p2),^2^^2  , 

^0^^) = Vsk ^ ^^k "^ s^k^k   • 

N^{k) = {4a^b^ - c2)(l ni^2^^2 ^ ^ ^^2^^2 _ p^m^^m^^c^^a^^)  , 

N2(k) = 0  . 

Characteristic function f^{f)  is given by (9). 

13 
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NARROWBAND CROSS-CORRELATOR 

S;^(t) + n^(t) 

S2(t) + n^lt) 

Lowpass 
Filter 

zill Sample, Weight, 
and Accumulate 

Figure 1. Narrowband Cross-Correlator 

The processor of interest in this section is depicted in figure 1. Input 

signals s^(t) and S2(t) are arbitrary deterministic narrowband real waveforms: 

Sj.(t) = Re{sj(t) expCiZirf^t)] = l\.{t)  cos(27rfQt + Pj(t)) = 

= aj(t) cos(2TTfQt) - b.(t) sin(2TrfQt)  for j = 1,2, (23) 

where input signal complex envelope 

Sj(t) = Aj(t) exp(iPj(t)) = aj.(t) + ibj(t) (24) 

in terms of polar or rectangular low-frequency components, respectively. 

Input noises n-|^(t) and n2(t) are zero-mean correlated narrowband 

jointly-Gaussian processes which may be nonstationary: 

u.{t)  = Re[n^(t) exp(i27rf^t)] = x.{t)  cos(2^fQt) - yj(t) sin(2TrfQt), (25) 

where noise complex envelope 

nj(t) = x.{t)  +  iyj(t)  for j = 1,2. (26) 

The statistics of the input noise complex envelopes are arbitrary: 

14 
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n^(t)|2 = Zal  , 

n^lt) 2   „ 2 
= car) 

n_^{t) ri_2{t) = 2a^02Y,  where y = p + ix = )YJexp(i(i), 

nj(t) n^(t) = 0 for all j, m. (27) 

The quantities a^, og, y  can all vary with time t, for nonstationary noise 

processes. There follows, for the statistics of the in-phase and quadrature 

components defined in (25), 

.2   2   2 
x^ = y^ = ap   x^y^ = 0 , 

2^2     

^1^2 ~ ^1-^2 ~ ^\°2^  ' 

^2-^1 " "^1-^2 " ^1''2^ • (28) 

The reason for breaking out this narrowband cross-correlator as a 

separate problem is now apparent from (28), Namely, at each time instant, a 

group of four random variables are statistically dependent on each other. 

This case does not fall into the framework of (8) above, since only two random 

variables were dependent there. 

Using the narrowband character of all the waveforms in (24) and (26), the 

lowpass filter output in figure 1 may be expressed as 

z{t) =-^[x^(t) + a^(t)][x2(t) + a2(t)] + |[y^(t) + b^(t)][y2(t) + b2(t)]. (29) 
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The final system output in figure 1 is the weighted sum of K terms. 

V = ^ w(k) z(t^) , (30) 

k=l 

where it is assumed that the time separations between samples at instants 

[t|^] lead to statistically independent random variables [z(t|^)} . The 

weights and statistics can change with sample time t, , in an arbitrary 

fashion. 

Based upon the method in [7], we find the characteristic function of z(t) 

in (29) to be given by 

f^^^'t) = exp 
i-ifD^ + j^D^     L i-^TDi + r^^ 

.^ %  " '^h 
(31) 

where the constants (in their most compact form) are given by 

D-,     =    CT^OpP 

n        1    2 2,,     2    2. 

1 Cz    22222 *T 
'^1 " 8r2^^1 ^ '^1^  "^ cTj^l^g + b2^  ~ 2a^a2p(aj^a2 + b^b2)  - 2a-^02^^^2^i ' 3ib2)|- 

(32) 
(The characteristic function and constants in (31) and (32) are not to be 

interchanged or confused with any earlier results in previous sections. In 

fact, observe there is no square root involved in (31).) All of the 

parameters in (32) can vary with time t. 

In terms of the signal polar definitions in (24) and the complex noise 

correlation coefficient y in (27), alternative expressions to (32) (where we 

have emphasized the t-dependence) are 

16 
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D^  =  a^(t)   a^{t)   Re[Y(tj}   =  o^(t)   a^it)    JY(t)|    COS  «S(t), 

NQ = i Rej"s*(t)  Sglt)]   = -^ A^(t) A2(t)  cosCP^(t)-P2(t)]  , 

^1 = i[^2^t)|Al(^)|^ ^ aj(t)js2(t)|2 - 2 a^(t)  a^{t)  Re(s*(t)  s^lt) r(t)]J = 

= ^  aglt)   A^(t)   +  a^(t)   A^(t)   -   2   a^(t)   Oglt)   A^{t)   A2(t) |Y(t)) C0s[P^(t)-P2(t)-«i(t) l] 

^ (33) -^ 

The mean  and variance of z(t)   in  (29)  follow from (31)  as 

"z = °1 " No  ' 

4=^1' 2D2 - 2D^NQ ^ 2N^ (34) 

Finally, the characteristic function of the narrowband cross-correlator 

output V in (30) follows from (31) as 

K 
\if)-J[   ^(rw(k),t^) 

I<=1 

-1 
+ ip2(.2/ IJ-jl-itw(k) D^(k) +fV(k) D2(k)j   exp 

K    w(k) NQ(k) + ijw^(k) N^(k) 

^1 l-ilw(k) D^(k) +?V(k) D2(k)' 

where we have allowed all the parameters in (32) and (33) to vary with time 

t|^. The mean and variance of output v follow from (35) as 

(35) 

K 

k=l 

\ = ^  w^(k) [^IM  + 2D2(k) + 2D^(k)NQ(k) + 2N^(k)7.    (36) 

17 
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A program for the evaluation of the cumulative and exceedance distribution 

functions via (35) is given in appendix C. 

In comparison with earlier results in [7], we have obtained the following 

extensions here: 

1. The input signals are arbitrary narrowband waveforms; they are not 

limited to two sine waves at the same frequency; 

2. The Gaussian input noises can be nonstationary; 

3. The number of terms summed to yield the narrowband cross-correlator 

output can be greater than 1; 

4. The characteristic function is in its most compact form, and the 

constants are expressed directly in terms of given quantities, 

having eliminated all auxiliary variables. 

Output Signal-to-Noise Ratio 

It is sometimes desirable to have simple expressions for the output 

signal-to-noise ratio of the narrowband cross-correlator in figure 1. In 

terms of the lowpass filter output z(t), we observe first from (32)-(34) that 

u^ls) = u^(s+n) - u^(n) = NQ = I A^ A^ cos(P^-P2) .       (37) 

We then have two alternative definitions of the signal-to-noise ratio at the 

lowpass filter output: 

u^(s)      A^ A2 cos^(P-^-P2) 

'^z^"^ " ~27T " ~r~2~T77~Y~z. 
""z (n) 2   a,   aJl+Q  -X   ) 

u^(s) A^ Ap cos^(P,-P„) 
R(s+n)=-f  =  i-^ i-^  . (38] 

a^(s+n)      4(D^ + 20^ + 2D^NQ + 2N^) 

18 
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These closed form expressions allow for arbitrary noise correlations and are 

considerably simpler than [7, eqs. 41-43]. The signal-to-noise ratios of 

system output v in figure 1 are K times greater than either form in (38). 

Specialization to Narrowband Energy Detector 

If the signal and noise parameters in (24) and (27) are chosen as 

a^(t) = a2(t) = a(t) , 

b^(t) = b2(t) = b(t) , 

o^{t)  = a^{t)  = a(t) , 

p(t) = 1, x(t) = 0 , 

then figure 1 reduces to identical input channels, that is, a narrowband 

energy detector. There follows from (32), 

(39) 

D^ = /(t), D2 = 0 , 

= ^(^^{t)  + b2(t)) =^ A2(t), N^ = 0 , (40) 

and (31) becomes 

^^(J.t) = exp 15 
A^(t)/2 

1 - ifa (t)   L  1 - "'^ (^^)_ 

Corresponding results for the system output v are easily obtained from this. 

(41) 
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REDUCTION OF HERMITIAN AND LINEAR FORM 

The most general case of interest in this section is as follows: 

random complex matrix 

A - Lx, x„ ... x„ I (42) 

is Mxl; constant complex matrix 

A = [a^^ ag ... a^j (43) 

is Mxl; and constant complex matrix 

^11 ••• ^IM 

bMi ••• ^ 

(44) 

is MxM and Hermitian.    The Hermitian and  linear form we consider is 

q = X^BX + |(x'^A+A^X)  = 

2:  Wn\ ^2 2. (^^3^^^^xJ. mm    mm' 
m,n=l m=l 

(45) 

which is real. Random variable q is a weighted sum of all possible products 

of [x^j and ix^j, plus linear combinations.  A and B are called the 

weighting matrices. 

* For M=2 or 4, and real variables and weights, (45) reduces to the earlier 

forms given in (1) and (29). 
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We will concentrate in this section on reducing form (45) to a weighted 

sum of squares of uncorrelated random variables. This stepping stone does not 

require any Gaussian assumptions on X and is therefore useful as a separate 

item. 

The relevant statistics pertaining to random vector X are 

X = E  (mean matrix), 

X = X-X = X-E, 

Cov[x} = XX = K (covariance matrix), (46) 

where statistics matrices E and K are given. MxM matrix K is always Hermitian 

and non-negative definite. We assume K is positive definite; otherwise 

eliminate the linearly dependent components of X. We allow x and x to 

be correlated with each other for any m and n; this situation is much more 

general than the investigations above. 

Let C be a constant MxM matrix and form the linearly transformed variables 

W = C^X = [w^ W2 ... w^f. (47) 

Then the statistics of W are given by 

W = C"E, 

W = W - W = c"x, 

Cov{w]j = ww" = C^^C = CHKC.       _ (48) 

Also, from (47), since 

X = C-"w, (49) 
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then we can express (45) as 

q = W^C~-^BC""w + ^(w'^D + D^W), (50) 

where we define constant Mxl matrix 

D = C"^A = [d^ d^ ... d^]"^. (51) 

We want to have, from (48) and (50), 

C^KC =1 (52) 

and 

C ^BC " =JV= diag(x^ X2 ... x^);  i .e. C"B ^C =X^ ,         (53) 

for then, in addition to the relation between the means, 

^f = C"E, (54) 

we have the desirable properties 

Cov{w} = I, (55) 

and ' 

q = W"^W + |(W"D + D"W) = ^ x^jw^p + Re ^ d^w^ .       (56) 
m=l m=l 

That is, the random vector W given by (47) is composed of uncorrelated unit- 

variance components, and q is a weighted sum of magnitude-squares of these 

components, in addition to a linear sum. 

We now have to address the problem of determining the MxM matrices C and 

_A.in (52) and (53). From [8, p. 106, Theorem 2], we identify 
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M—K,  K-»B-1, A-*J\."^; (57) 

then according to [8, p. 107, eq. 29], we must solve for C and A in the 

equation 

B-^C = KCA"^  i.e.  BKC = UL. (58) 

So the only matrix that need be considered is the MxM product BK. C is the 

modal matrix, and j\. the eigenvalue matrix, of BK. Also, from (51), 

D = C^A, since C~^ = C^. (59) 

Letting C = [C^^^ ... C^^^],  where eigenvector C^'"^ is a Mxl 

matrix, (58) can be expressed as 

BKC^'") = \^C^^^      for  1 < m < M. (60) 

Several important properties hold for jV and C: 

The [Xj^^^ are all real, but can be positive, zero, or negative. 

If K and B are real, then C is real. (51) 

If B is positive definite, then x > 0  for  1 < m < M, 

If A = 0 and E = 0, there is no need to solve (58) for C, 

because D = 0 and W = 0. 
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QUADRATIC AND LINEAR FORM 

If random vector X is real Gaussian, if A is real, and if B is real 

symmetric, then mean E and covariance K are real, and it follows that modal 

matrix C is also real. Also from (47) and (59), W and D are real. Equation 

(45) reduces to 

q = X'''BX + X'''A = 
M 

m,n=l 

M 

m=l 

X b X + ^^ a X , 
m mn n  ^-^^ m m [62] 

which is a quadratic form and linear form. 

Letting mean W in (54) be expressed as 

W = Iv^   Vg ... v^] (63) 

the Gaussian character of X and the linear transformation (47) allow us to 

write the probability density function of W as a product: 

M 

p(W)=J^[(2.)-l/2^xp(-^(w^-V^)] (64) 

Here we used property (55). Since we now have, from (56), 

^   (x w^ + d w^), 
m=l mm   mm' :65: 

the characteristic function of q is 

fq(?) = ^^^^UW -  exp^Ti(x,w2 . d^wj)j 

24 
m=l 

-1/2 

exp 

M    2        ^ ? 
r^   X V    + A ^    + i|d'^/2 

.^^ mm   mm  ■'m 

m=l 
1 - ^■2^mT 

, (66) 
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where the square root must be a continuous function off, not a principal 

value square root.* Notice that only one square root and one exponential is 

required per f value. Observe that the characteristic function depends on the 

separate values [v^ ^ and [d^'^^ not merely on their sums.  If A = E = 0, the 

exponential is unity, by virtue of (54) and (59). And if M=2, (66) reduces to 

(5), while M=4 leads to form (31). 

To summarize, the characteristic function f (f) in (66) for random 

variable q in (62) requires the constants {x^,   (d^,  and [v^] for 1 < m < M. 

The initially given quantities are weighting matrices A, B and statistics 

matrices E, K. We first solve the equation (58), 

BKC = CA, (67) 

for eigenvalue matrix JL and modal matrix C corresponding to BK. Then 

j\.= diag(Xj^ \^  ... x^)   , 

0 = C^A = [d^ d^ ... d^]^ , 

T T 
¥ = C E = [v^ ^2 ... v^] . (58) 

If the mean of input X is zero, E = 0, and if the linear weighting form is 

zero, A = 0, then there is no need to solve for modal matrix C of BK in 

(67). Then D = W = 0 and the exponential term in (66) is unity. One only 

need compute eigenvalue matrixAof BK in this case. 

A program for the evaluation of the cumulative and exceedance 

distribution functions corresponding to characteristic function (66) is listed 

in appendix D. The inputs to the program are considered to be M, [x '[^ 

* That is, the square root is the analytic continuation of the function 

defined as 1 at ^ =0. 
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^"^ml' ^^ml' ^^^^ ^^' ""^ ""^ presumed that (67) and (68) have already been 
solved prior to use of the program. 

The cumulants of q are obtained from (66) as 

X^M = 

M 

5 (x^ + x^v^ + d^vj  = u„ I  m   mm   mm'   q 

i 
for n = 1 

"-l(n-l)l i C 'I '  "(Vm ' \ 'S\     ''''^' 
m=l    *- -i 

(69) 

In particular,  the variance of q is 

(70) 

If another random variable is formed by the sum of several independent 

random variables q. with the form (62), but with different sizes M-, the 

new characteristic function is the product of terms like (66), 

Breakdown of X into Two Components 

It is useful to investigate a particular version of the general results 

above, because the resultant forms correspond to some often-realized practical 

energy detectors and correlators. We let M = 2N, and 

X = 
o21 o22 

,(1) 

,(2) 

where U, V, A^ , A^  are Nxl real matrices, and {B^~^> are NxN real 

dl =22 21 _ D12' matrices. Also B-^-^ and Q'^'^  are symmetric, while B'^^  = B 

(62) can be expressed as 

Then 

(71) 

26 



TR 7035 

q = X^BX + X^A = [u"^ V J 
^11 3I2 

,21 ,22 
[uT V^] ,(1) 

.(2) 

,-) 

= U^B-'-^U + U''"B-'-^V + v'^^B^-'-U + V"''B^^V + U^A^''-^ + V^A^^^ = 

= LI"''B-'-^U + 2U"''B-'-^V + V''"B^^V + U''"A^^^ + V''"A^^^ = 

.11 .. . o.. .12 ..  , .. ,22 = 5 iu b"" 11 + 2u b"" V + V b"" V ^ + 
^_. I m mn n   m mn n   m mn n 

m,n=l ^ ^ 
^^\ n n    n n / 
n=l^ ^ 

= all possible auto and cross combinations of random 

variables [u |  and h\  ,  plus linear combinations. (72) 

We also have, from (47) and (68), 

w = c''"x = C^ U 
.VJ w = c = C D = C' 

:2) 

K = Cov{x]  = Xf =   |] [n^ VT]   = 
K K 
uu   uv 

K K 
vu   vv 

(73) 

Then the fundamental matrix required in (67) is expressable as 

BK = 

11 B12 ^u ^v 

21 B22_ 
^u K 

vv 

(74) 

which is a 2Nx2N matrix. Also random variable (55) is now 

2N 
q = '^ (x w'" + d w ^ ^^[ mm  mm 

m=l 

(75) 
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which has 2N terms. The characteristic function of q, in general, follows 

from (66) and (68) as 

^(f) 

2N 

m=l 

-1/2 

exp 

2N 
•^T"  X V + d V + i . ^ \  mm   mm 

'^zi     l-i2x„f 
^</2 

m=l 
(76) 

where 

W = [^1 ••• ^2H^    = '^ ^^ I ,  D = [d^ d^ ... d^,^] = C 
:i) 
2) 

(77) 

(If A^^^ = A^^^ = E^ = E^ = 0, then D = 0 and W = 0, and there is no 

need to solve for modal matrix C; the exponential in f_(f) in (76) is then 

unity.) 

As a special case, if A = 0, B^^ = 0, B^^ = 0, then (71) and (73) 

yield 

0  B 

B21O 

12 

,  D = 0 , (78) 

and (72) gives 

T 12 
q = 2U B^^V = 2 

m,n=l ^m ^n ^n 

= all possible cross combinations of ju 1 and [v T . (79) 

Then (74) specializes to 

BK = 
0   B 

12 

B21 0 

K    K uu   uv 

K    K 

28 

12     12 
vu     vv 

'21K ..  B21K 
L vu   vvj  |_   uu     uv_ 

(80) 
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and (75)  reduces to 

2N 2 

m=l 

(81) 

with characteristic function 

%(?) 
2N 

IT {' - '''J[ 
m=l 

-1/2 

exp 
2N 

?5 
x»2 m m 

m=l 
1 - ■'2x^T 

(82] 

following directly from (76)  and  (78). 

For the particular example of 

B^2 =i diagai^2 i,) -^[g. 92  •••  9^]    [h^ h2  ...  h^],       (83) 

then 

N /N 
q=^iuv    +(2gu   l/^hv   1, 

^1    " " "      VnTi    " "J I n=1    " " ' 
:84) 

with the same characteristic function (82). 

12  1 
As a still more-special case, let B = j  I; then (79) and (81) give the 

simple cross-correlator (but with correlated inputs for all time separations) 

2N 
q = '^ u V = '^ 

n=l     m=l 

X w m m (85) 

and (80) and (77) become 

1 
- 2 

^u ^v" 
,   w = = CT 

\' 

_^u ^v_ E 
. v_ 

= [v, "2N^ (86) 
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The important equations that must be solved are always 

BKC = CX (87) 

or 

BKC^'") = X r("i)  for  1 < m < M = 2N, (88) 

where all matrices B, K, C,j\.are 2Nx2N. The characteristic function of 

(85) is again (82). 

Special Case of Correlator (85) 

Here we let components U and V have the same covariance and a scaled 

cross-correlation; that is, let 

K  =K,K  =K,K  =pK 
UU    0    VV    0    UV     0 

(89) 

where p is a scale factor. This case corresponds, for example, to a common 

signal in two independent components:" 

u(t) = s(t) + n^(t), 

v(t) = s(t) + n2(t). 

where s(t), n-j^(t), n2(t) are all independent and have a common covariance. 

Then (86) becomes 

(90) 

BK 1 
~ 2 

^^ K 
0 

^0 ^^ 

(91) 

Now suppose that we can determine the NxN eigenvalue matrix p and modal 

matrix Q of K^, that is 
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KQQ = QT; r= diag(y^, y^  ... y^). 

Then we have the standard relations [8] 

KQ = qrq^  where  QQ^ = I, 

We can now express the 2Nx2N matrix in (91) as 

QPFQ^    qrq^ 

BK = -^ 

Qrq 

Q 0 

0 Q 

Qprq^j 

Q^ 0 

0  Q' 

and 2Nx2N identity matrix 

'2N 

"Q     0"" "i    o" r T     ~i 
Q      0 

_0      Q_ 0      I 0      Q^ 

There follows 

BK - xl 2N 

n 
Q 0 

0  Q 
L   _J 

\o? - Xl ^p 

r      ^PT- ^I 

Q"^ 0 

0 Q' 
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(92) 

(93) 

(94) 

(95) 

(96) 

But the middle matrix in (96) can be developed in detail in the partitioned 
form 
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1 
2PT1 - X 

1 

I 1 

I 

- X 
1 

1 
i T^i - ^ 

L 2PYN - ^ 

(97) 

This matrix is singular when the kth row is equal to, or the negative of, the 

k+N til row. This leads to the eigenvalues [x 1 ^^ of matrix BK: 

1, 
x^   =j{o+l)y^ I, 

, • • •, ^N ^ 2'^°'^'^)'^ 

^N+1 = 2^''"■'■ ^^1' ••*' ^2N = 2(P"1)Y[* (98) 

Thus we need only solve for the N eigenvalues ^Y^]J of matrik K^, and 

then use them as above to determine all 2N eigenvalues of BK; this is a 

significant shortcut. 

If also E^ = E^ = 0, then W = 0 from (86), and the characteristic 

function of q in (85) follows from (82) and (98) as 

^q(?) = 

fN -»-l/2 

J["[(i-i(pn)Y^f)(i-i(p-i),^r)] 
m=l 

IN 

-jj|l_i2p,^fMl-p')Y2^'] 
m=l 

-1/2 

(99) 

This is a generalization of [1, eq. 54], which held for a single pair of 

Gaussian random variables. 
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EXAMPLES 

The program listed in appendix A for the second-order processor (8) and 

attendant characteristic function (9) has been employed to yield the result in 

figure 2. The particular values for the number of terms K, the weights, and 

the input statistics are listed in lines 20-120. There is no physical 

significance attached to this particular example; rather it has been run 

simply to illustrate the extreme generality that the technique is capable of. 

Some negative values for the weights, means, and correlation coefficients have 

been employed to emphasize this generality. This simple example (and others 

to follow) can be used as a check case on any user-written program to evaluate 

cumulative and exceedance distribution functions. 

The selection of parameters L, A, b in lines 130-150 is discussed in 

detail in [1]; the reader is referred there for the deleterious effects that 

can occur for improper choices of L, A, b. The selection of M^, the FFT 

size in line 160, is rather arbitrary; it controls the spacing at which the 

probability distributions are computed, but has no effect upon the accuracy of 

the results (except for round-off noise). Additional computational details on 

the particular program for characteristic function (9) are given in appendix A. 

The ordinate scale for figure 2 is a logarithmic one. The lower right 

end of the exceedance distribution function curve decreases smoothly to the 

region lE-11, where roundoff noise is encountered. The exceedance 

distribution function values continue to decrease with x until, finally, 

negative values (due to roundoff noise) are generated. For negative 

probability values, the logarithm of the absolute value is plotted, but 

mirrored below the lE-12 level. These values have no physical significance, 

of course; they are plotted to illustrate the level of accuracy attainable by 

this procedure with appropriate choices of L and A. 

The rates of decay of the cumulative and exceedance distribution 

functions in figure 2 are markedly different for this particular example. 

Additionally, since the decays are both linear on this logarithmic ordinate, 

it means that both tail distributions are  exponential, not Gaussian. These 

attributes of the cumulative and exceedance distribution functions are easily 
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Figure  2.   Distributions  for  Second-Order  Processor 
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and quickly discernible by use of the numerical technique in [1], for a 

limitless variety of weights and input statistics, with a minimum of effort on 

the part of the user. 

As a check on the program in appendix A, the second-order processor in 

(8) was simulated, and 10,000 independent trials were used to determine its 

performance for the exact same parameters as used for figure 2 above. The 

program is listed in appendix E and the results are given in figure 3. The 

corroboration is excellent, even near the lE-4 probability level. 

As the number of terms, K, in the second-order processor (8) is 

increased, and if the statistics are identical, the random variable x should 

approach Gaussian, at least near its mean. The example in figure 4 was run 

for K = 10, and all weights and statistics independent of k; the particular 

choices were 

a = .6, b = -.6, c = .3, d = -.2, e = .2, * 

m^ = .5, m^ = -.5, a^ = 1, a^ = 1, p = .4, (100) 

L = 4, A = .05, b = 20Tr, M^ = 256. 

The cumulative and exceedance distribution functions in figure 4 both display 

a parabolic shape near the mean of x, which signifies Gaussian behavior of the 

random variable, as expected. However, on the tails, the distributions are 

tending to linear, which means an exponential decay there. This observation 

for this example confirms the comments of [7, p. 673]. 

The cumulative and exceedance distribution functions for an example of 

the second-order processor with fading are displayed in figure 5, as 

determined from characteristic function (21) and the corresponding program in 

appendix B. The power law, v, for the fading probability density function 

(19) is 2.7 for this example, but can be easily changed. The particular 

constants employed are listed in lines 20-110 in appendix B. 

An example of the distributions for the narrowband cross-correlator of 

figure 1 is presented in figure 6, as evaluated from characteristic function 
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(31) and the program in appendix C. The weightings, signal components, and 

noise statistics have no special values or interrelationships; the particular 

values used here are listed in lines 20-110. 

The distributions for the reduced quadratic and linear form (65) and 

accompanying characteristic function (66) are presented in figure 7 for the 

numerical example employed in the program listing in appendix D. If the given 

form is instead that of (62), then (67)-(68) must first be solved before the 

program in appendix D can be employed; that is, one must augment these results 

with the capability for extracting the eigenvalues (and eigenvectors in some 

cases) of the MxM matrix BK. The size of the FFT, M^^ has been increased to 

1024 in figure 7; this results in finer spacing of the distribution values and 

additional spikes in the round-off noise region centered about lE-12. 
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SUMMARY AND DISCUSSION 

Closed form expressions for the characteristic functions of the decision 

variables of three classes of second-order processors have been derived. The 

input noise to the processors must be Gaussian, but it can be nonstationary 

with arbitrary statistics. Programs for the direct evaluation of the exact 

cumulative and exceedance distribution functions have been generated and then 

exercised for completely general values of the weights, signal parameters, and 

noise statistics. There is no assumption needed about a large number of 

statistically independent contributors, nor need any signal-to-noise ratio be 

either small or large. The first two classes of processors are restricted in 

form, but include many of the practical devices often encountered in detection 

and estimation problems. The third class covers the most general second-order 

processor; it requires the solution for the eigenvalue and modal matrices of 

an MxM matrix (where M is the size of the general quadratic form) in addition 

to the program furnished here. The approach utilized here allows a user to 

quickly and easily obtain accurate quantitative information about the 

performance of a particular processor, and to investigate the effects of 

making changes in any of the input constants or parameters. 

Approximations to the performance of continuous quadratic processors are 

possible by use of the above procedures. For example. 

jjdt^ dt^ x(t^) B(t^, t^) x(t2) s A^ A^ ^x(mA^) B(mAp nA2) x(nA2),   ( 101) 

m,n 

which is of the form X BX encountered in (62). Also 

:^ dt2 u(t^) 6(tp tg) v(t2) 2 A^ A2^u(mA^) B(mAp nA^) v(nA2),   (101) dti 

m,n 

T 12 
which is of the form U B V encountered in (79) 
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Receiver operating characteristics, that is, detection probability vs 

false alarm probability, can be easily determined from the above results. 

First store the exceedance distribution for zero signal strength in an array. 

Then plot the exceedance distributions for nonzero signal strengths vs this 

stored array of numbers, each point for a common threshold. The common 

thresholds are most easily realized by keeping sampling increment A and FFT 

size M^ the same throughout all the computations. 

43/44 
Reverse Blank 
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APPENDIX A. SECOND-ORDER PROCESSOR 

This program computes the cumulative and exceedance distribution 

functions of random variable (8) via characteristic function (9). The 

required inputs are listed in lines 20-120 and are annotated consistently 

with (8). The parameters D^, D2, NQ, Np N2 required in characteristic 

function (9) are pre-computed once in loop 290-510 for the sake of execution 

time. The mean of x is entered in line 520. When we enter loop 590-830 for 

the actual calculation of the characteristic function (9), the number of 

computations are minimized. For example, only one complex exponential and 

square root are required per f value, in lines 740-750. The square root in 

(9) is not a principal value square root, but in fact must yield a continuous 

function in?. In order to achieve this, the argument of the square root is 

traced continuously from f= 0 (line 530). If an abrupt change in phase is 

detected, a polarity indicator takes note of this fact (line 780) and corrects 

the final values of characteristic function f (f) (line 790). More detail 

on the selection of L, A, b in lines 130-150 is available in [1]. 

10 ! 
28 
30 
40 
50 
60 
70 
3 0 
90 
100 
110 
120 
130 
140 
150 
160 
170 
180 
190 
2 0 0 
210 
220 
230 
240 
250 
260 
270 
280 

SECOND-ORDER PROCESSOR 
K = 5 
DflTR .6,-.5,.4,-.3,.2 
DATA .9,.8,.7,-.6,-.5 
DATA -.6,-.3,1,1.2,1.4 
DATA .l,-.2,-.3,.4,.5 
DATA -. 7,.6,.5,.4,-.3 
DATA .2,.3,.4,-.5,-.6 
DATA .3,-.7,-.6, . 5, . 4 
DATA .1,.3,.5,.7,.9 
DATA .2, .4,.6,.3, 1 
DATA .4,-.5,.6,.7,-.3 
L = 25 
Delt.a=.05 
E3=.75*(2*PI.'Delta:J 
Mf = 2'-3 
PRINTER IS 0 
PRINT "L =";L,"Delta =' 

N u m b €■ r   o f t e r m s s u m m e d 
a. < k ':>   1...1 e i g h t. i n g s 
b •'. k > w e i g h t i n g £ 
c < k ) w e i g h % i n g s 
d ( k ) w e i g h t i r-i g s 
e < k > 1...1 e i g h t i n g s 
M e an s o f r an d o m u ar i ab 1 e s s ( k ) 
N e an s o f r an d o m K> ar i ab 1 e s t < k ) 
S t an d ar d d e '■.■< i at i o n s- o f s (k ':> 
St andard deu i at i ons of t(k > 
C or r e 1 at i o n c o €■ f f s . o f s ( k ) an d t ( k > 
Limit on i n t egr a 1 of' c har . f'unc t i on 
S am p 1 i n g i n c r e m e n t o n c h ar . f u n <z t i o n 
Shift b, as fraction of alias interval 
Size of FFT 

Delta,"b =";Bs,"Mf =";Mf 
RED I M A (1: K) , E ( 1: K >, C ( 1: K ) , D ( 1: K ) , E ( 1 : K :J 

RED I M Ms a:K),Mt a:K >,Ss(1:K >,St a:K >, Rho a: K) 
RED I M D 1 <1:K >,D2 a:K >,N0(1:K >,N1C1:K >,N2 <1:K > 
RED I N X 03: Mf -1 ) , Y < 0 : Mf - 1 ) 
DIM A u: 10!), B a: 10 >, c a: 10), D (1:10 >, E (1:10 > 
DIM Ms u : 10 >, Mt u : 10 ;■, Ss < 1: 10 >, St < 1: 10 >, Rho c 1: 10 > 
DIM D1(1:10>,D2(1:10),N0(1:10>,Nl(1:10>,N2(1:10) 
DIM XC0:1023),Y(0:1023) 
READ R < *),B(*),C < * >,D C *),E(* >     !  Enter 
READ Ms(*>,Mt ■.'■ ■>, St •:*), Rho' c o n s t an t: 

A-1 
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290 
300 
310 
320 
330 
340 
350 
360 
370 
380 
390 
400 
410 
420 
430 
440 
450 
460 
470 
4S0 
490 
500 
510 
520 
530 
540 
550 
560 
570 
580 
590 
600 
610 
620 
630 
640 
650 
6G& 
670 
680 
690 
700 
710 
720 
730 
740 
750 
760 
770 
780 
790 
800 
310 
820 
830 
340 

Calc u1 at i on 
of 
fi ar aril e t ers 

FOR   J=l   TO   K 
TI=MS(:J;'-2 

T2 = Mt(:j;:.---2 
T3 = SS(J:J--2 

T4=st. (.•.;>-2 
T5 = Ms.(: J)*Mt(J> 
T6 = Rho(: J)*Ss(.J>*St C J!) 
T 7 = 4 * fl ( J > * B ( J ) - C ■; J ) •■■•• 2 
T8= a -Rho C J ) '-•2 ) *T3*T4 
T9 = Mt <J)*Ss(; J) 
T10=Ms<J>*St<J) 
T11=D'::J>-^2 

Ti2=E <:.;;■ ■•■■■2 
T13 = D<.J>*E(J> 
Dl (;j)=2*<:fl(J)*T3 + E(J)*T4 + C( J)#T6::' 
D2<J)=T7*T8 
N0<:j>=fl(:.j)*Ti+E(:j>*T2+c(j::'*T5+D';j:)*M 
T = T7*<.5*(T1*T4 + T2*T3:)-T5*T6;' 
T = T+ < 2*fl< J;> *EC J ;■ -C C J > *D C J > ;■ *Ss ( J > * C T9-Rho( J ;■ *T 1 0:: 
T = T+ < 2*B ■; J) *D ( J > -C C J :> *E ( J > ;■ *St. (J > * ( T1 0-Rho (J ) *T9!: 
Hl':;j>=T-.5*i::Tll*T3 + T12*T4>-T13*T6 
H2 ■; J >=-< ft(J) *T 1 2 + B ■; J > *T 1 1 -C ■: J > *T l 3 > *TS 
NEXT   J 
M u x = S U M C H 0 ::■ + . 5 * S U M C D 1 > 
R = 0 
P=l 

'T'(:0:) = . 5*DeUa*Muy 
N=INT<:L.--Delt.a) 
FOR   Ns=l   TO   N 

j>+E':: j:j*r'it. (J: 

M e an   o f   r an d o m   '■.■' ar 1 ab 1 e-   x 
flrgument   of   square   root 
P o 1 ar i t','   i n d i c at o r 

Ki=Delta*N£ 
X2=Xi*Xi 
Pr=l 
Pi =3r = Si =0 
FOR   J=l   TO   K 
Dr=l-X2*D2(J> 
Di =-Xi *D1 ■; J';i 
CALL   Mul (Pr, Pi ,Dr,Di ,fl,B> 
Pr = fl 
Pi=B 
CALL Di yo-jo(.;:>■ 
3r=Sr+fl 
Si =Si +B 
NEXT   J 
CALL   Exp<-Xi*Si,Xi*(Sr+Bs 
CALL   Sqr'-;Pr, Pi , C, D) 
Ro = R 
R = ATN<D.''C> 
IF   flBSCR-Ro>>l.6   THEN   P=-P 
CALL   Di y<:fl, B, C*P, D*P, Fyr , Fy i 
ris = Ns   MOD   Mf 
X(Ms>=XCMs>+Fyr/Ns 
Y<:Ms)=Yais)+Fyi .■■■Ns 
NEXT   Ns 
CALL   F f t 1 0 z ( N f , X ( * ::■ , Y < * )) 

A r g u m e n t   x i    o f 
Cal c u 1 at i on 
of 
c h ar ac t e r i s t i c 
funct i on 
fy<xi > 

char.    fn. 

*N2 ■; J ) , -X i *N 1 ( J :) , Dr , D i , A , B ) 

fl, E> 

Col 1ap sing 

0   subscript   FFT 
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850 
860 
870 
830 
890 
900 
910 
920 
930 
940 
950 
960 
970 
930 
990 
1000 
1010 
1020 
1030 
1040 
1050 
1060 
1070 
1080 
1090 
1100 
1110 
1 120 
1130 
1140 
1150 
1160 
1170 
1180 
1190 
1200 
1210 
1220 
1230 
1240 
1250 
1260 
1270 
1230 
1290 
1300 
1310 
1320 
1330 
1340 
1350 
1360 
1370 

LOTTE 
RFIPHI 
CflLE 
I HE T 
RID t1 
ENUP 
I HE T 
= Bs*M 
GVE E 
RAW B 
ENUP 
OR Ks 
= Y(Ks 
(Ks> = 
CK£> = 
F Pr> 
F Pr< 
F flBS 
LOT K 
EXT K 
ENUP 
RINT 
OR Ks 
r = X<K 
F Pr> 
F Pr-< 
F RBS 
LOT K 
EXT K 
ENUP 
flUSE 
UMP G 
RINT 
RINTE 
ND 

R IS "GRAPHICS" 
CS 
0,Mf,-14,0 
YPE 3 
f/8,1 

VPE 1 
f*Del t.a--'::2*PI > 

,-14 

=0 TO Mf-1 
>/PI-K3/Mf 
.5-T 
Pr=.5+T 
=1E-12 THEN Y=LGT(Pr) 
=-lE-12 THEN Y=-24-LGT(-Pr> 
(.PrXiE-iZ   THEN Y = -12 

s,Y 

Y';0>; YU); Y(:Nf-2>; Y(Mf-i > 
=0 TO Mf-l 
■s) 

= 1E-12 THEN Y = LGT(Pf-> 
=-lE-12 THEN Y=-24-LGT(-Pr) 
<Pr^::;iE-12 THEN Y = -12 

jrigin   for   random   y-ariablie   x 

!      Cumu 1 at i Me-   probab i 1 i t; 
!      E X c e 6- d an c e-   p r o-ti ab i 1 i t-1 

1 n 
i n 

x<*: 
Y (*: 

RflPHICS 
LIN < 5 ;:■ 
R   IS   16 

UB   Mul O-a, Yl, X2, Y2, fl, B; 

=X1*X2-Y1*Y2 
=X1*Y2+X2*Y1 

fl 
B 
SUBEND 

I 

UB   Di vCXl,Yl,X2,Y2,fl,B) 
=X2*X2+Y2*Y2 
= Oa*X2 + Yl*Y2>/T 
= CYl*X2-Xl*Y2;i/T 
UBEND 

UB ExpCX,Y,fl,B> 
=EXPCX> 
= T*COS(Y,) 
=T*SIN<Y) 
UBEND 

Zl/ 

EXP(Z:J 
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13 
13 
14 
14 
14 
14 
14 
14 
14 
14 
14 
14 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
01 
IS 

> ■ 

16 

) ■ 

16 

j ■ 

16 

> • 
16 

j ■ 

16 

> ■ 

16 

> ■ 

16 

16 

) ■ 

16 

> ■ 

17 

) ■ 

17 

j ■ 

17 

> ■ 

17 

f • 

17 

» ■ 

17 

30 
90 
00 
10 
20 
30 
40 
50 
60 
70 
80 
90 
00 
10 
20 
30 
40 
50 
60 
70 
80 
90 

0 0 
99 = 
10 
98^ 
20 
97' 
30 
96t 
40 
941 
50 
91': 
60 
89:; 
70 
86' 
80 
S3 
90 
79' 
00 
751 
10 
7i; 
20 
67 
30 
62 
40 
=;7 

SUE 
IF 
R = E 

IF 

GOT 
F = S 

T=. 

fl = F 

B = F 

IF 

T = fl 

fl = - 

B = T 

IF 
Fl = - 

B = - 

SUE 
! 

SUB 
Din 
INT 
DFIT 

H 9 3 2 

DAT 
.347 
DAT 
014 
DAT 
021 
DAT 
305 
DAT 
440 
DAT 
138 
DAT 

32243 
DAT 

39728 

W 3 

Sqr(X,Y,A,E> 
X<>0 THEN 1430 
= SQR( . 5*AES(Y) !) 
Y<0 THEN B=-E 
0 1540 
QR<SQR(X*X+Y*Y> 
5*ATN<Y/X) 
* C 0 S <: T ) 

sSINCT) 
X>0 THEN 1540 

Y>=0 THEN 1540 
A 
B 
END 

Ff t 10z(N, K(*;J , 
C(Q:256) 

EGER 11,1 
A 1,.9999 
238458S,. 
A .997723 
26672,.99 
fl .991709 

PRINCIPAL SQRCZ; 

! N < = 

!l 
DAT 
696 
DAT 
369 
DAT 
0 8 8 
DAT 
308 
DAT 
89 

DAT 
594 
DAT 

558 

18158,.98 
A .981963 
3 0039, .97 
A .968522 
19416,.95 
A .951435 
65183,.93 
fl .930766 
51690,.91 
fl .906595 
01196,.39 
fl .879012 
56122,.86 
fl .848120 
12303,.82 
fl .814036 
046 09,.79 
fl .776888 
46506,.75 
fl .736816 
25284,.71 
fl .693971 
54847,.£6 
fl .648514 

fl .600616 
;08191418,.57 

0  DflTfl .550457 
o ii t o a"? b a i: 6 7 8 , .51 

2,13,1 

811752 
999077 
066644 
456457 
753669 
630809 
369 1 10 
433938 
094274 
370347 
020969 
945922 
9610 7 9 
667905 
704515 
044372 
226429 
0 8 6 6 9 3 
344803 
80 4504 
3 29706 
210657 
465673 
318679 
568877 
143219 
460890 
6 9 9 9 9 2 
401022 
005721 
4793S4 
0 7 8 0 74 
972937 
93F;F;99 

15, I 6, I 
9 9'"' 

,13,1 
70133 

954 
; 9 0 4 5 6 

48' 

4, . 
9 9 0': 
45,. 
9 8 0 't 
QG ^ . 
966': 
96, . 
949^ 
>02,.9373 
9 2 8 5 0 6 0 8 

;'21 , . 9142 
9 0 3 9 8 9 2 9 

145,.3876 
87607009 

y^fa:. 

9 8 5 i 
'-' S""' '■ 

972: 
764; 
956': 
281:; 

"-' ! 
844:: 
::53,. 
8 1 0 

::00, 

. 8245 
45719:: 

:i44 

JO 

■J f 

J ■ 

176 

04, 
64:; 
€'3 ■ 

01 
545 
66, 

788.' 
104! 
749 
542 
70 7 
405 
662 
315 
615 
9 9 3 
565 
249 
514 

o r 

6679, 
069 7 0 
5428, 
77642 
0403, 
39952 
1045, 
40335 
0593, 
3901 1 
0473, 
09755 
3123, 
39620 
4195, 
23610 
5250, 
89302 
8253, 
46427 
3363, 
36394 
1672, 
06731 
4737, 
15777 
2890, 
31590 
4492, 
3131 0 
8422, 
02744 

'-■ -J, 

•10 

9,110 
9, .99 
5620' 
. 996:; 
0 02, , 
. 9900 
339, . 
.9795 
206, . 
. 9653 
732,. 
.9475 
913,. 
. 9262 
704, . 
. 9013 
403, . 
. 8730 
000, . 
.3415 
785,. 
. 8063 
627, . 
.7691 
523, . 
.7234 

1024, N = 2--INTEGER 0 3 u b s c r i p t 

50 
590, . 
. 6391 
581, . 
.5907 
784, . 
. 5401 
193, . 

, .J, K 

9830581796,.999698813696,.9995294175 
993475530573,.993113112900 

20299291,.996312612183,.9957674 14468 
993211949235,.992479534599 
58210262,.989176509965,.983257567731 
984210092387,.933105487431 
69765635,.978317373720,.977028142658 
971503390986,.970031253195 
94441698,.963776065795,.962121404269 
955141168306,.953306040354 
35591018,.945607325381,.943593458162 
935133509939,.932992798835 
10242138,.923879532511,.921514039342 
911706032005,.909167983091 
43347046,.893674465694,.895966249756 
884797098431 , .331921264348 
94978418,.870086991109,.867046245516 
354557983365,.351355193105 
54977437,.838224705555,.834862874986 
321102514991,.817584813152 
47553544,.803207531431,.799537269103 
734556597156,.730737228572 

65622,.761202385434 
.,. .   ..... ....„5 
24247082951,.720002507961 

,02754744457,.698376249409 
33667773,.680600997795,.676092703575 
■-■^^■-'■■-^'-■-■--■■■^      653172842954 
4444864, . 6: 

6: 

03337646,.76516' 
745057785441,.7409511; 
64390448,.72 

1   .1   .H C -7 

! 
0 

657306693297, 
24444864,.634393284164,.629638238915 
610382806276,.605511041404 
59701859,.535797857456,.580813958096 
560661576197,.555570233020 
71472730,.534997619887,.529803624686 
508830142543, . 50:7'=--o-"-'-^--- 
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1760 DFlTfl .498227666973, .492 
,.471 396736326,.465976495768, 
1770 DRTfl .444122144570,.438 
,.416 429560098,.410843171053, 
1780 DRTfl .388345046699,.382 
, . 359 895036535,.354163525420, 
1790 DRTfl .331106305760,.325 
, .302 005949319,.296150888244, 
1800 DATA .272621355450,.266 
,.242 980179903,.237023605994, 
1810 DRTR .213110319916,.207 
, . 133 039887955,.177004220412, 
1820 DRTfl .152797185258,.146 
, . 122 410675199,.116313630912, 
1830 DRTfl . 919089564971E-1, . 
67443 9195637E-1,.613207363022 
1840 DRTR . 429382569349E-1, . 
18406 7299058E-1,.122715382857 
1850 READ C^:*) 
I860 K=1024/N 
1370 FOR J=0 TO H/4 
1830 C<J>=CCK*J^ 
1390 NEXT J 
1900 Hl=H/4 
1910 N2=N1+1 
1920 N3=N2+1 
1930 N4=N1+H3 
1940 Log2n=INT<1.4427*L0G(N) 
1950 FOR 11=1 TO Log2n 
I960 I2 = 2'^CLoq2n-Ii;' 
1970 13=2*12 
1980 I4 = N/I3 
1990 FOR 15=1 TO 12 
2000 I6=(:i5-l)*I4+l 
2010 IF I6<=H2 THEN 2050 
2020 N6 = -CCN4-I6-1 > 
2030 N7 = -Ca6-Nl-i;' 
2040 GOTO 2070 
2050 N6=ca6-i:j 
2060 H7=-C(N3-I6-1) 
2070 FOR 17=0 TO H-I3 STEP I 
2080 18=17+15 
2090 19=18+12 
2100 N8 = X(I8-n-Xa9-l> 
2110 N9 = Ya8-l )-?< I 9-1) 
2120 xa8-i>=x<is-n+xa9-n 
2130 Ya8-i:)=Y(is-i)+va9-i) 
2140 X'; I9-1)=N6*H3-N7*N9 
2150 Ya9-1 >=H6*N9 + N7*N8 
2160 NEXT 17 
2170 NEXT 15 
2180 NEXT I 1 
2190 I l=Loi32n+l 
2200 FOR 12=1 TO 10 
2210 ca2-i;' = i 
2220 IF I2>Log2n THEN 2240 
2230 CC 12-1 ::'=2--a 1-12) 
2240 NEXT 12 

. 4 
61 
. 4 

31 

71 
. 2 
1 1 
. 1 

. 1 
85 
E- 
3 6 
E- 

8 1 ■! 
60? 
62^: 
05^ 
34:; 
43^ 
0 2': 
9 0 i 

3 1 i 
13r 
70': 
04- 
10; 
79^ 
1, . 
80^ 

!30, .41: 
;:71095f 
539,. 4:: 
.31400!: 
::65, .3^ 
ii 6 3 0 2 4': 

613 

10828 

-?;:? 
55,. 1 
20729 
23444 
19524 
29414 
35884 

7550160148,.482183772079,.476799230063 
,.455083587126,.449611329655 
3093818853,.427555093430,.422000270800 
, .39962419984 6, .3 9 3 9 9204 0 0 61 
7007410216,.371317193952,.365612997805 
, .342660717312,.336389853392 
9502030316,.313681740399,.307849640042 
,.284407537211,.278519689385 
0794117915,.254865659605,.248927605746 
,.225083911360,.219101240157 
1104634842,.195090322016,.189068664150 
, . 164913120490, . 158858143334 
0658239333,.134530708507,.128498110794 
,.104121633872,.980171403296E-1 
-1, . 796824379714E-1,.735645635997E-1 , . 
3497E-1,.490676743274E-1 
-1 , . 306748031766E-1, .245412285229E-1 , . 
4915E-2,0 

+ . 5> 

■10=1024 
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2250 K=l 
2260 FOR 11 = 1 TO CO) 
2270 FOR 12=11 TO C(S> STEP C';9> 
2280 FOR 13=12 TO CC?;' STEP CCS) 
2290 FOR 14=13 TO <l<6')   STEP CC?) 
2300 FOR 15=14 TO C<5> STEP C<6> 
231Q FOR 16=15 TO CC4> STEP C(:5) 
2320 FOR 17=16 TO CC3> STEP C<4) 
2330 FOR 13=17 TO CC2> STEP 0(3) 
2340 FOR   19=18   TO   Ca>   STEP   C(:2) 
2350 FOR   110=19   TO   €■•:&:>   STEP   C<1> 
2360 J=I10 
2370 IF K>J THEN 2440 
2380 fl=X<K-l) 
2390 XCK-l>=X<J-n 
2400 X(J-n=fl 
2410 fl = Y(:K-l> 
2420 Y<K-n=Y(:.J-l> 
2430 Y<J-1)=R 
2440 K=K+1 
2450 NEXT 110 
2460 NEXT 19 
2470 NEXT 18 
2480 NEXT 17 
2490 NEXT 16 
2500 NEXT 15 
2510 NEXT 14 
2520 NEXT 13     . 
2530 NEXT 12 
2540 NEXT II 
2550 SUEEND 

A-6 



TR 7035 

APPENDIX B. FADING FOR SECOND-ORDER PROCESSOR 

This program computes the cumulative and exceedance distribution 

functions for characteristic function (21), when the power fading factor r in 

(18) has probability density function (19). The parameters D,, D„, N„, N, 

are pre-computed once in lines 210-310. The logarithms in lines 430 and 440 

have arguments that never cross the branch line along the negative real axis 

for the principal value logarithm; hence the calculated characteristic 

function is automatically continuous for all 5. 

10 ! 
20 
30 
40 
50 
60 
70 
80 
90 
100 
110 
120 
130 
140 
150 
160 
170 
180 
190 
200 
210 
220 
230 
240 
250 
2€0 
270 
280 
'290 
300 
310 
320 
330 
340 
350 
3€0 

FflDI 
Nu = 
K = 5 
flk = 
Bk = 
Ck = 
DAT 
DAT 
Ss = 
St = 
Rho 
L=l 
Del 
Bs = 
Mf = 
PRI 
PRI 
RED 
DIM 
REFl 
M20 
t'102 
Mil 
Tl = 
T2 = 
T3 = 
T4 = 
N0t: 
Nip 
Dl 
D2 
Dip 
D2p 
Mux 
ML4y 

T = N 

.7 

NG FOR SECOHD-ORDER PROCESSOR 
Power law for fading 
N u m b e r   o f t e r- m •=■ ■=■ u rn m e d 
a < k ':>   w e i g h t i n g 

,9 !  b(k) wei ght i ng 
,6 !  c I.' k ) wei g h t i n g 
.2,.3,.4,-.5,-.b  !  Means of random yar i ab1es s 
. S, -. 7 , -. 6 , . 5 , . 4  !  Means of randoni '■.■'ar i ab 1 es t 

S t an d ar d d e u i at i o n o f s '■. k > 
Standard deMiation of t(k> 
C o r r e 1 at i o n c o e f f . o f ■=■ ( k > 
Limit on integral of c har , 
S am p 1 i n g i n c r e m e n t o n c h ar . 

2*PI.-Del t a) ! Shift b, as fraction of al i 
Size of FFT 

fl 
fl 
. 3 
.2 
= -.4 
50 
ta=.25 
. 6 2 5 * ( 
2-3 
HTER I 
NT "L 
IM MsC 
Ms<l: 

D MsC* 
DOTai 

= D0T'::M 

= D0T'::M 

Ss*Ss 
St*St 
R h o * S s 
4*flk*B 
=flk*M2 
=T4*C. 
2*(Rk* 
T4*<1- 
iDl+N0 

=D2+N1 
N0p+. 

=Mux+E 
u -. 5 * K 

Ck > 
<.k:> 

and 
f u n 
f u 

as- 

tCk) 
c t i o n 
n c t i o n 
i n t e r v a 1 

S   0 
=";L,"Delta 
1 :K;' ,Mt (i: K:: 

10 >, M t <: 1:10:: 
Ml 

Ms) 
Mt > 
Mt) 

";Delta,"b   =";Es,"Mf   =";Mf 
x(Q:Mf-n, Ya3:Mf-i) 
xce:1023),Y(0:1023> 

! Enter   cons t an t s 
! Calc u1 at i on 
! of 
! parameters 

*yt 
k-Ck*Ck 
0+Bk*M02+Ck*M 
5*CT2*M20+T1* 
Tl+Ek*T2+Ck*T 
Rho*Rho)*Tl*T 
p/Nu 
p/Nu 
5*K*D1 

11 
M02>-T3*M1 1 

t'1 e an o f r an d o m u ar i ab 1 e 

5-1 



TR 7035 

370 
330 
390 
400 
410 
420 
430 
440 
450 
460 
470 
430 
490 
500 
510 
520 
530 
540 
550 
560 
570 
580 
590 
600 
610 
620 
630 
640 
650 
esQ 
670 
680 
690 
709 
710 
720 
730 
740 
750 
760 
770 
780 
790 
800 
S10 
820 
830 
840 
850 
860 
870 
880 

X'::0;:i=0 
V(0:J = . 5* Del t. a*Muy 
N=IHT(:L/Delt.a::. 
FOR Ns=l TO N 
Xi =11 el ta*Ns 
X 2 = << i * X i 
CALL LogC1-X2*D2,-Xi *D1,fl,E 
CALL L.:ig< 1-X2*ri2p, -Xi sDlp, C 
Tl=T*R-Nu*C 
T2=T*B-Nu*D+B3*Xi 
CRLL ExpCTl, T2, Fyr, FyO 
Ms=Ns MOD Mf 
X(M£>=X(Ms;i+Fs-'r/Ns 
Y(:Ms)=Y<:Ms>+Fvi.-Hs 
NEXT Ns 
CALL Fft. 1 0z C Mf, X (*) ,V(*')) 

IS "GRAPHICS" 

<2*PI 

-Pr; 

PLOTTER 
GRAPHICS 
SCALE 0,Mf,-14,0 
LINE TYPE 3 
GRID Mf/S, 1 
PENUP 
LINE TYPE 1 
B=E£*Mf*Delt 
MOVE B,0 
DRAW B,-14 
PENUP 
FOR Ks=0 TO Mf-1 
T = Y(:K£>/PI-K3.-Mf 
X';KS) = .5-T 

YCKs>=Pr-=.5 + T 
IF Pr>=lE-12 THEN Y = LGT(Pr:J 
IF Pr<=-1E-12 THEN Y=-24-LGT' 
IF ABS(;Pr><lE-12 THEN Y = -12 
PLOT Ks,Y 
NEXT Ks 
PENUP 
PRINT Y(0:J 

FOR K3=0 TO 
Pr = X<:Ks) 
IF Pr>=lE-12 THEN Y = LGTc:pr) 
IF Pr<=-1E-12 THEN Y=-24-LGT(-Pr) 
IF ABSc:Pr)<lE-12 THEN Y = -12 
PLOT K£,Y 
NEXT Ks 
PENUP 
PAUSE 
DUMP GRAPHICS 
PRINT LINC5> 
PRINTER IS 16 
END 
I 

Y<1 
Mf- 

Y(Mf-2);YCMf-l 
1 

H r g u m e n t- x i 
C a 1 c LJ1 at i o n 
of 
character! st 
funct i on 
fy(xi ) 

Co 1 1 apsi ng 

subscript FFT 

of   char 

1 c 

t'n. 

0 r i g i n   f o r   r an d o m   y ar i ab 1 e 

C u m u 1 at i M e 
Exceedance 

p r o b ab i 1 i 
probabi1i 

ty 
t.y 

1 n 
1 n 

A I, * ^ 

YC*) 

i-2 
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890 SUE Exp(X,Y,fl,E) 
900 T=EXPCX> 
910 fl = T*C03'::Y:-' 
920 B = T*3IH'.-:Y> 

930 SUBEND 
940 ! 
950 SUB Log';X, Y,fl, E> 
960 fl=.5*L0G<X*X+Y*Y> 
970 IF XO0 THEN 1000 
980 B=.5*PI*SGN<Y) 
990 GOTO 1020 
1000 B = flTH(:Y/X) 
1010 IF X<0 THEN B = B + PI*(:i-2*i::Y<0)> 
1020 SUBEND 
1030 ! 
1 040 SUE Fft 1 Qz( N , X < * > , Y C * :> :J     ! N 

! EXP(Z:J 

!  PRIHCIPHL LOGC 

;--10 = 1024, N = 2--INTEGER     0 subscript. 

B-3/B-4 
Reverse Blank 
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APPENDIX C. NARROWBAND CROSS-CORRELATOR 

This program computes the cumulative and exceedance distribution 

functions of random variable (30) via characteristic function (35). The 

parameters D^^ Q^, NQ, N^ are pre-computed in lines 280-390 and 

weighted according to (35)-(35) in lines 400-440. All the functions employed 

are analytic. 

10 
28 
30 
40 
50 
60 
70 
80 
90 
100 
110 
120 
130 
140 
150 
160 
170 
180 
190 
200 
210 
220 
230 
240 
250 
260 
270 
280 
290 
300 
310 
320 
330 
340 
350 
360 
370 
380 
390 
400 
410 
420 
430 
440 
450 
460 

1 

1 
2,.4,, 
4,-.5, 

NHRROWEflND 
K = 5 

■   DflTfl   .6,-. 
DflTfl   .9, .:; 
DflTfl   -. 6, - 
DflTfl 
DflTfl 
DflTfl 
DflTfl 
DflTfl 
DflTfl   .9,- 
L = 50 
Del t.a=. 5 
B£=.5*C2* 
Mf = 2-^8 
PRINTER I 
PRINT "L 
REDIM 
REDIM 
REDIN 
REDIM 
DIM 
DIM 

CROSS-CORRELflTOR 

4, ■-') 

- . o , - .  J 

, 1.2, 1.4 
3,.4,.5 

I, . 4 , - . 3 
. 7 , . 9 
.13,1 

PI/Del t..a) 

0 

N u m b e r   o f   t e r m ■=■ 
w (k '1 

al(k) 
b 1 ( k ) 
■=L2 (k > 

b2a:::) 
si grnal (k 
si grna.2 (k 
r h o ( k ) 
1ambda 
Limit   on 

w e i g h t i n g s 
signal 1 in-ph as e c o 
■=■ i q n a 1 1 q u a d r a. t u r t 
signal 2 in-p h as e c o 
signal 2 q u ad r- at u r e 

> noise 1 standard d 
I n o i s e 2 s t an d an d d 
n o i s e i n - p h as e c o r r . 
noise quadrature cor 
i n t e g r a 1 o f c h ar . f u 

mpo 
c o rii 
n'i p o 
c o rn 
e '-..I i 
e K> i 

r. 
n c t 

S am p 1 i n g i n c r e m e n t o n c h ar . f u n c 
Shift   b,    as   fraction   of   alias   in 

n e n t s 
p o n e n t 
n e n t s 
p o n e n t; 
at i ons 
at i ons 
effs. 
coeffs 
i on 
t i on 
teryal 

De ";L,"Delta 
wa:K),fl 1 a:K>, E1 (1: 
sia:K>,s2(:i:K>,Rho< 
Di (1 :K>,D2< i: K>, Nea 
X<0: Mf-l :>, Y03: Mf-l >, 

w < 1:10 >, fl 1 c 1:10 :J , B1 a : 
sia: 10> ,S2< i: 10), Rho( 

Si 

It 

1 

of   FFT 

N: 

a, 
,fl; 
K >, 
:y,\ 
:<:i: 

Mf 

DIM   Did: 10>,D2(1 
DIM   XCO: 1023;', Y(0 

10 
l: 

: 1 
::i 

,RhoC*),Lamb 

10),N0(1: 
1023) , W2': 

El(*),fl2 REflD   WC*), fll <:*> 
REflD   S1<*>,S2'::* 
FOR   J=l   TO   K 
Sls = Sl<j;"'^2 
S2s = S2C J)'--2 
T1=S1CJ>*S2(J> 
DlCJ)=T2=Tl*Rho<J> 
D2'::.J) = . 25*Sls*S2s*( 1-RhoCJ 
T3 = fl K J > *fl2 < J > +E1(J > *E2(J) 
N0<:J> = .5*T3 
T4 = fl2<.J)*Bl C J)-fll ( J::'*B2(J) 

T5 = S2s* < fl 1 C J ) ■■■■■2 + B 1 ■; J) '--2) +S 
Nl C:J) = . 125*<T5-2*T2*T3-2*T 
NEXT   J 
MAT   W2=W.N 
MflT   D1=W.D1 
MAT   D2=W2.D2 
MflT   N0=W.N0 
MflT   N1=N2.N1 
Mux = SUM C N0 ) +SIJM < D 1 ) 
Muy=Mux+Es 

b   =";ES,"Mf   =" 
a:K),E2(1:K) 
Lambda*: 1: K) 
1 ( 1: K ) 
K) 

>, fl2'; 1:10>, E2<: 1: lO) 
10),LambdaC1:10) 
0), N1 a: 10) 
: 10) 
E2(*)    !      Enter 
daf*)    !      constants 

Calc u1 at i on 
of 
p ar am e t e r s 

■LambdaC J)"-2) 

1 s* C fl2 C J ) ••■••2 + B2 C J) •'■■2) 
IsLambdaCJ)*T4) 

Mean of random '-.-'ar i ab 1 e 

C-l 
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470 
480 
490 
500 
510 
520 
530 
540 
550 
560 
570 
530 
590 
600 
610 
620 
630 
640 
650 
66Q 
670 
680 
690 
700 
710 
720 
730 
740 
750 
760 
770 
780 
790 
800 
810 
320 
830 
840 
850 
860 
870 
880 
890 
900 
910 
920 
930 
940 
950 
960 
970 
980 
990 
1000 
1010 
1020 

;i *N1 i; J:J , Dr. Di , fl, B> 

;i S r + B ■=.) 
Fur,Fyi 

XC0)=0 
Ya3) = . 5*Del ta*Muy 
H=IHT'::L/Del ta) 
FOR Ns=l TO N 
Xi =riel t. .a*Ns 
X 2 = X i * X i 
Pr=l 
Pi=Sr=Si=0 
FOR .J=l TO K 
Dr=l+X2*D2(J:> 
Di=-Xi*DlCJ> 
CALL MuKPr, Pi , Dr, IM , fl, B 
Pr = fl 
Pi=B 
CALL Di W;N0';J>, 
Sr=Sr+fl 
Si =3i +B 
NEXT J 
CALL ExpC-Xi *Si 
CALL Di yCA,B,Pr,Pi, 
ris = Hs MOD Mf 
X(;ris>=X'::Ms)+Fvr.'Ns 
Y(Ms>=V(Ms)+Fyi.'Hs 
NEXT Hs. 
CALL Ff t 10z(Nf , X'::*> , Y C * ::i ) 
PLOTTER IS "GRAPHICS" 
GRAPHICS 
SCALE 0,Mf,-14,0 
LINE TYPE 3 
GRID Mf/S, 1 
PENUP 
LINE TYPE 1 
E = E£*r'1f*De1 t a/<2*Pi::' 
MOVE B,0 
DRAW B,-14 
PENUP 
FOR Ks=0 TO Mf-1 
T = Y(Ks>/PI-Ks-'Mf 
X(Ks)=.5-T 
Y(:Ks.')=Pr=.5 + T 
IF Pr>=lE-12 THEN Y=LGT(Pr> 
IF Pr<=-1E-12 THEN Y=-24-LGT 
IF ABSCPr;'-:; lE-12 THEN Y = -12 
PLOT Ks,Y 
NEXT Ks 
PENUP 
PRINT Y(0 
FOR Ks=0 
Pr=X<Ks> 
IF Pr>=lE-12 THEN Y = LGT<Pr-;' 
IF Pr<=-1E-12 THEN Y=-24-LGT 
IF ABSCPrXlE-12 THEN Y = -12 
PLOT Ks,Y 
NEXT Ks 
PENUP 
PAUSE 

A r g u m e n t 
C a1c u 1 at i 
of 
c h ar ac t e r 
f unc t i on 
f y ( X i ') 

X 1 

on 
of :har- f n. 

i St i 

A, B: 

Col lapsing 

^ u b; :ript FFT 

0 r i g i n f o r- r an d o m •■.> ar i ab 1 e 

Curnu 1 at i u 
Exceedanc 

e p 
e   p 

rob 
r o b 

ab i 1 i 11 
ab i 1 i t i 

1 n 

i n 

■Pr> 

. Y a 
TO Mf- 

; Yaif 
1 

Mf-1) 

-Pr) 

C-2 
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1030 DUMP GRAPHICS 
1040 PRINT LINC.5) 
1050 PRINTER IS 16 
10S0 END 
1070 ! 
1080 SUE riu 1 (. X1, Y1 , X2 , Y2 , fl, B > 
1090 fl=Xl*X2-Yl*Y2 
1100 E = Xl*Y-2 + X2*Yl 
1110 SUBEND 
1120 ! 
1130 SUB DiM^Xl,Y1,X2,Y2,R,B) 
1140 T=X2*X2+Y2*Y2 
1150 fl=<Xl*X2+Yl*Y2>/T 
1160 E=<Y1*X2-X1*Y2>--'T 
1170 SUBEND 
1130 ! 
1190 SUE Exp<X, Y,FI,E:) 
1200 T=EXP<X> 
1210 fl=T*COSCY> 
1220 B=T*SIN<Y) 
1230 SUBEND 
1240 ! 
1 250 SUB Ff 110z ■; N, X C * >, Y (*') :> 

! zi*z: 

!  Z1/Z2 

!  EXPCZ; 

! N •10 = 1024, N = 2--^ INTEGER     0 subscript 

C-3/C-4 
Reverse Blank 
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APPENDIX D. REDUCED QUADRATIC AND LINEAR FORM 

This program computes the cumulative and exceedance distribution 

functions of random variable (55) via characteristic function (65). The 

required inputs to the program are M and the [x ^, [d ], {v "^ of (68). 

The square root in (66) must again be continuous and is handled exactly as in 

appendix A. The parameters required in the exponential of (66) are 

pre-computed in lines 170-210, and the mean of q is entered in line 220. 

10 
20 
30 
40 
50 
60 
70 
30 
90 
100 
110 
120 
130 
140 
150 
160 
170 
180 
19 0 
200 
210 
220 
230 
240 
250 
260 
270 
280 
290 
300 
310 
320 
330 
340 
350 
360 
370 
380 
390 
400 
410 

REDUCED QUflDRflTIC RND LINEAR FORM 
i. u m ni e d M = 5 

DflTR .2,-.3,.4,.5,-.fa 
DflTFl -. 1 , . 3, . 5, . 7, -. 9 
DflTfl .6,.5,-.4,-.3,.2 
L = 8 0 0 
Del t.=i=. 08 
Bs=. 5*';2*PI/Del t a) 
Nf = 2--10 
PRINTER IS 0 
PRINT "L =";L,"Delta =";Delta,"b =";Bs,"Mf =";Mf 
REDIM Lambda':: 1: M >, D C1 :r'1) ,Nu( 1: M), flU :M) ,B(1: M>, C( l: M) 
REDIM X(0:Mf-l), Y<0:t1f-1) 
DIM Lambda'; 1: 10 >, D ■:: 1: 10), Nu •:: 1: 10 >, fl (1: 1 0), B'; 1: 10 >, C C1 
DIM y.(.Q: 1023> , Y'::0: 1023) 
READ Lambda';*) , D C * ) , Nui.;*> 
FOR Ms=l TO M 

N 1.4 m b e r o f t e r m s 
Lambda ','al ues 
d i-^'al ues 
Nu 'v'al ues 
Limit, on inteigral of   char, f unc t i'Dn 
S am fj 1 i n g i n c r e m e n t o n   c h ar-. f u n c t i o n 
Shift   b,    as   f r act i o n   o f   alias   i n t e r <-j a 1 
Size   of   FFT 

10: 

flais)=2*Lambda';Ms:) 
B '; Ms ) = ':: Lambda'; Ms > *Nu < Ms ) +D < Ms > ) *Nu ':: M 
Cais) = .5*D(Ms;"-2 
NEXT   Ms 
M u q = S U M '; L am b d a > + S U M '; B > 
R = 0 
P=l 
Muy=Muq+Bs 
X<0)=0 
Y';0) = . 5*Del ta*Muy 
N=INT';L-'Del ta> 
FOR   Ns=l   TO   N 
Xi=Delta*N£ 
Pr=l 
Pi =Sr = Si =0 
FOR   Ms=l    TO   M 
T=-fl<Ms)*Xi 
CALL   Mul<Pr,Pi, 1,T,A,B) 
Pr = fl 
Pi=B 

CALL   D i u(B C Ms >,C ais)*X i,1,T,A,B) 
Sr=Sr+A 
Si =Si +B 
NEXT   Ms 

Enter   'lonstant 
Ca 11: u 1 at i on 
of   parameters 

M e an   o f   r an d o m   '..' ar i ab 1 e   q 
Arigument   of   square   riDot 
Pol ar i %y   i ndi i:at or 

Argument   xi 
Calculat i on 
of 
c harac t er i st i i: 
f un>: t i on 
f v ■; X i ) 

o f   c h ar fn, 

D-1 
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420 
430 
440 
450 
460 
470 
4S0 
490 
500 
510 
520 
530 
540 
550 
560 
570 
530 
590 
600 
610 
620 
630 
640 
650 
&€,& 
670 
630 
690 
700 
710 
720 
730 
740 
750 
760 
770 
780 
790 
800 
810 
820 
830 
840 
850 
860 
870 
880 

:sr+Es.)*xi, R, E; CALL ExpC-Si *X., ,_, 
CALL Sqr-CPr , Pi , C, D; 
Ro = R 
R = I=ITN(;D.--C) 

IF flES(R-Ro>>1.6 THEN P=-P 
CALL Di 'V";A, E, C*P, ri*P, Fyr, Fyi ) 
Ms=Ns MOD Mf 
X<Ms>=X(:Ms:)+Fyr 
Y<Ms)=Y(M£>+F:> 
NEXT Ns 

/Ns 
-Ns Y<Ms)=Y(M£>+Fyi/N£ 

NEXT Ns 
CALL Ff t. 1 0z ■:; Mf , X C * > , Y (.*■)-> 
PLOTTER IS "GRAPHICS" 
GRAPHICS 
SCALE 0,Mf,-14,0 
LINE TYPE 3 
GRID Mf/8, 1 
PENUP 
LINE TYPE 1 
B = E£*f1f*Del t.=i^-':;2*PI ) 
MOVE B,0 
DRAW B,-14 
PENUP 
FOR Ks=0 TO Mf-1 
T = Y<:Ks>/PI-Ks/Mf 
X<Ks> = . ^^-T • 

C o 1 1 ap s i n g 

0 subscr-i pt. FFT 

Origin for random variab1e q 

YCKs>=Pr=.5+T 
IF Pr>=lE-12 THEN 
IF Pr<=-1E-12 THEN 
IF AES<Pr)<lE-12 THEN Y=-12 

C u 
Ex 

rnu 1 at 
c e e d a 

1 u e- 
n c e 

i' = LGT' 
Y = -24 

Pr) 
LGTC-Pr!) 

p r o b ab i 
probabi 

1 1 t y    i n 
1 i t y   i n 

X (. * :> 
Y (* :> 

PLOT Ks 
NEXT Ks 
PENUP 

, Y 

PENUP 
PRINT YCO); YC1 >; YCMf-2;'; 
FOR Ks = 0 TO rif-l 
D,.-. - V / V .- ■; 

Yaif-i;' 

Pr=XCKs> 
IF Pr>=lE-l 
IF Pr<=-1E- 
IF HBSCPriX 
PLOT Ks,Y 
NEXT Ks 
PENUP 
PAUSE 
DUMP GRAPHICS 
PRINT LINC5> 
PRINTER IS 16 
END 

2 THEN Y = LGT'::Pr:J 
12 THEN Y=-24-LGT' 
IE-12 THEN Y=-12 

-Pr) 

D-2 
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S90 
900 
910 
920 
930 
940 
950 
960 
97Q 
980 
990 
1000 
1010 
1020 
1030 
1040 
1050 
10S0 
1070 
1080 
1090 
1 100 
1110 
1120 
1130 
1140 
1150 
1160 
1170 
1130 
1190 
1200 
1210 
1220 
1230 
1240 

SU 
fl 
B = 
SU 
I 

SU 
T = 
R = 
B = 
SU 

SU 
T = 
fl = 
B = 
SU 
! 
SU 
IF 
fl = 
IF 
GO 
F = 
T = 
fl = 
B = 
IF 
T = 
R = 
B = 
IF 
fl = 
B = 
SU 
! 
SU 

IB   Mul <X1, Y1,X 
X1*X2-Y1*Y2 
X1*Y2+X2*Y1 
BEND 

'2,fl,B;. 

E   DiMOa, Y1,X2, Y2,R,B:) 
X2*X2+Y2*Y2 
<X1*X2 + Y1*Y2).-'T 
CY1*X2-X1*Y2>.--T 
BEND 

Z1*Z2 

!    zi.'-z: 

E   Exp<X, 
EXP<X) 
1*003 00 
T*SIN<:Y> 
BEND 

■(', R, B ;j EXP<Z; 

B 
X 

B = 
Y 

TO 
SQ 
.5 
F* 
F* 

X 
R 
-B 
T 

Y 
-fl 
-B 
BE 

Sqr CX, Y, fl, B^' 
<>0   THEN   1110 
3QR<.5*RES';Y>;' 

<0   THEN   E=-B 

1220 
R<SC1RCX*X + Y*Y>) 
*RTN<Y/X) 
COS<T) 
SIN<T> 
>0 THEN 1220 

>=0 THEN 1220 

PRINCIPflL SQRCZ^ 

ND 

E   Fft 102'.'N,X';*>, VC*) N   <=   2'^10   =   1024,    N = 2--INTEGER 0   subscript 

D-3/D-4 
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280 
290 
300 
310 
320 
330 
340 
350 
360 
370 
380 
390 
400 
410 
420 
430 
440 
450 
460 
470 
480 
490 
500 
510 
520 
530 
540 
550 
560 
570 
580 
590 
600 
610 

FOR 
X = 0 
FOR 
V1=R 
V2 = R 
S = V1 
IF S 
Q=CL 
Q = SQ 
G1=V 
G2 = V 
S = Ms 
T = Mt 
X = X + 
NEXT 
X a) 
NEXT 
MAT 
PLOT 
GRRP 
SCRL 
GRID 
PENU 
FOR 
Y = LG 
PLOT 
NEXT 
PENU 
FOR 
Y = LG 
PLOT 
NEXT 
PENU 
END 

1=1 TO Tt 

.J=l TO K 
ND-.5 
ND-. 5 
*V1+V2*V2 
>.25 THEN 310 
-LOGCS>>/S 
R<Q + Q) 
1*Q 
2*Q 
<J)+fll(J>*Gl+Ee(J)^G2 
c: J)+St <.J)*G1 
fl(.j^*s*s+B';j)*T*T+C(:j 
J 

=x 
I . i 

SORT X 
TER IS "GRRPHICS" 
HICS 
E   -30,10,-4,0 
5,1 

P 
1=1   TO   Tt 
TC(:i-.5>-'Tt j 

X < I > , Y 
I 

P 
1=1   TO   Tt 
T<l-a-.5>/Tt) 

X a >, Y 
I 

p 

GENERATE   TWO 
INDEPENDENT 
GflUSSIflN 
RANDOM 
VARIABLES VIA 
ACCEPTANCE 
AND 
REJECTION 

j*S*T + D';j)*S + E< j;'*T 

E-2 
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